Recurrent Neural Word Segmentation with Tag Inference

نویسندگان

  • Qianrong Zhou
  • Long Ma
  • Zhenyu Zheng
  • Yue Wang
  • Xiaojie Wang
چکیده

In this paper, we present a Long Short-TermMemory (LSTM) based model for the task of Chinese Weibo word segmentation. The model adopts a LSTM layer to capture long-range dependencies in sentence and learn the underlying patterns. In order to infer the optimal tag path, we introduce a transition score matrix for jumping between tags of successive characters. Integrated with some unsupervised features, the performance of the model is further improved. Finally, our model achieves a weighted F1-score of 0.8044 on close track, 0.8298 on the semi-open track.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Short-Term Memory for Japanese Word Segmentation

This study presents a Long Short-Term Memory (LSTM) neural network approach to Japanese word segmentation (JWS). Previous studies on Chinese word segmentation (CWS) succeeded in using recurrent neural networks such as LSTM and gated recurrent units (GRU). However, in contrast to Chinese, Japanese includes several character types, such as hiragana, katakana, and kanji, that produce orthographic ...

متن کامل

Cross-lingual Word Segmentation and Morpheme Segmentation as Sequence Labelling

This paper presents our segmentation system developed for the MLP 2017 shared tasks on cross-lingual word segmentation and morpheme segmentation. We model both word and morpheme segmentation as character-level sequence labelling tasks. The prevalent bidirectional recurrent neural network with conditional random fields as the output interface is adapted as the baseline system, which is further i...

متن کامل

From Word Segmentation to POS Tagging for Vietnamese

This paper presents an empirical comparison of two strategies for Vietnamese Part-of-Speech (POS) tagging from unsegmented text: (i) a pipeline strategy where we consider the output of a word segmenter as the input of a POS tagger, and (ii) a joint strategy where we predict a combined segmentation and POS tag for each syllable. We also make a comparison between state-of-the-art (SOTA) featureba...

متن کامل

Recurrent Neural Network Method in Arabic Words Recognition System

The recognition of unconstrained handwriting continues to be a difficult task for computers despite active research for several decades. This is because handwritten text offers great challenges such as character and word segmentation, character recognition, variation between handwriting styles, different character size and no font constraints as well as the background clarity. In this paper pri...

متن کامل

Word Boundary Decision with CRF for Chinese Word Segmentation

Chinese word segmentation systems necessarily perform both accurately and quickly for real applications. In this paper, we study on word boundary decision (WBD) approach for Chinese word segmentation and implement it as a 2-tag character tagging with conditional random filed (CRF). With a help of tag transition features, WBD with CRF segmentation approach can achieve comparative performances co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016